skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Ying‐Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, a novel version of macrocyclic arenes, namely leaning pillar[6]arenes, was discovered and it can be considered as a tilted version of a pillar[6]arene with two hydroxy/alkoxy functionalities removed. Through a facile two‐step synthetic approaches, in conjunction with a diversity of post‐modification possibilities, a series of leaning pillar[6]arenes, with good cavity adaptability and enhanced guest‐binding capability, was synthesized, and their self‐assembly in single‐crystal states is presented. DFT calculations demonstrated that the lower rotational barrier of unsubstituted phenylene rings, the uneven electron density centered at the leaning phenyl rings, and the polarization effect along the edge generated by the hydrogen‐bond‐induced orientation of hydroxy groups greatly affected the host‐guest properties, and meanwhile provided an intuitive explanation for the pillar‐like and rigid structure of traditional pillar[6]arenes. Significantly, the crystal structure of cyclo‐oligomeric quinone was obtained by direct oxidation of leaning pillar[6]arenes. 
    more » « less